منتديات 3/7 التعليمية

اهلا وسهلا بمنتدى 3/7عزيزي الزائر لا تقرأ و ترحل بل قم بتسجيل لكي نرى ما يفيض به قلمك
الإدارة
منتديات 3/7 التعليمية

دخول

لقد نسيت كلمة السر

المواضيع الأخيرة

» مواصفات صلى الله عليه وسلم
السبت 31 أغسطس 2013, 11:30 من طرف ikram talabi 3/8

» علامات يوم القيامه الصغرى والكبرى
السبت 31 أغسطس 2013, 11:06 من طرف ikram talabi 3/8

» des cours SVT collège 1er;2eme et 3eme
الجمعة 29 مارس 2013, 18:37 من طرف عبدالالاه

» Regardez le film "LIle au Trésor" tiré du roman d'aventures Robert Louis Stevenson
الأربعاء 30 يناير 2013, 11:19 من طرف Abdelhalim BERRI

» إمتحانات موحدة لمادة الفرنسية
الجمعة 07 سبتمبر 2012, 15:04 من طرف halima chef

» des cours SVT collège 1er;2eme et 3eme
السبت 11 أغسطس 2012, 04:38 من طرف fadwajam

» موحد محلي في اللغة العربية
الإثنين 30 أبريل 2012, 16:07 من طرف بامنصور

» أمثال مغربية
السبت 21 أبريل 2012, 17:02 من طرف ikram talabi 3/8

» Site Leçons de PC
الأربعاء 04 أبريل 2012, 17:46 من طرف omar9999

مكتبة الصور


تدفق ال RSS


Yahoo! 
MSN 
AOL 
Netvibes 
Bloglines 

يومية

عدد الزوار

.: عدد زوار المنتدى :.

رتبة جوجل


    معلومات عن الرياضيات

    شاطر

    omar radif
    عضو مبدع
    عضو مبدع

    google chrome
    الدولة : المغرب
    ذكر
    عدد المساهمات : 100
    نقاط : 2804
    السٌّمعَة : 2
    تاريخ التسجيل : 09/01/2010
    احترام قانون منتديات 3/7 : 100%
    الهواية : شطرنج
    المهنة : طالب


    default معلومات عن الرياضيات

    مُساهمة من طرف omar radif في الأربعاء 24 فبراير 2010, 14:25

    القضية
    Proposition



    القضية Proposition :


    القضية هي جملة خبرية تحتمل إمكانيتان فقط فهي محددة من حيث أنها إما جملة صواب و و إما خطأ.



    أمثلة :


    1- جذر العدد 2 عدد غير نسبي.

    2- 1+1=5.

    3- أحمد يدرس فيزياء بحتة.



    كل جملة من الجمل السابقة تشكل قضية .

    و يمكن ملاحظة أن قضية ما قد يكون بالإمكان التثبت من صحتها

    بينما قد نجد قضية أخرى لا يمكن بحال اختبارها لعدم توفر أدوات ذلك مثل قولنا

    4- سوف ينقرض سمك القرش قبل الحيتان.

    و طبعا هناك جمل لا تشكل قضايا مثل :

    5- ماذا تقول؟

    6- هذه الجملة خاطئة

    7- مربع[م] العدد س يساوي 36.

    فالجملة الأولى استفهامية و لا معنى لكونها صادقة أم لا

    أما الجملة الثانية فهي مضللة. لماذا؟

    و بالتالي لا يمكن أن تكون صحيحة كما لا يمكن أن تكون خاطئة.

    أما الجملة الأخيرة فهي صحيحة لبعض قيم س و في نفس الوقت غير صحيحة لبعض القيم الأخرى.

    أنواع القضايا :

    القضايا نوعان إما قضايا بسيطة أو مركبة.

    تعليق واحد اقرأ المزيد البرمجة الخطية
    Linear Programming
    البرمجة الخطية هي فرع من الاستمثال الرياضي وهذا الفرع يبحث في إيجاد النقاط المثلى لدالة معينة وفق قيود (constraints) معينة.
    البرمجة الخطية هي حالة خاصة جداً بحيث أن الدالة هي خطية والقيود عبارات عن متراجحات خطية .
    ولها تطبيقات كثيرة ،
    مثلاً في متغيرين نريد أن نجد أصغر قيمة للمقدار ولكن بشرط أن يحقق الحل المتراجحات التالية:





    في حالة متغيرين في مجموعة حل نظام المتراجحات تكون عادة محددة بمضلع ما . والمبرهنة[م] الرئيسة للبرمجة الخطية هي أن النقطة المثلى (إن وجدت) هي أحد رؤوس المضلع!

    يمكن تعميمها لـ n من المتغيرات بـ m من المتراجحات .
    لتكن



    فإن مسألة البرمجة الخطية تصاغ بالشكل المصفوفي المختصر:




    تكون مجموعة حل نظام المتباينات عبارة فوق-مسطح polytope في الفضاء ، وتكون النقطة المثلى إن وجدت أحد رؤوس فوق-المسطح.
    وتسمى هذه المنطقة المحصورة بالمسطح بالمجموعة الممكنة feasible set ، وإن كانت المجموعة خالية فإن المسألة غير ممكنة infeasible .

    لذا يجب البحث عن النقطة المثلى عبر رؤوس هذا المسطح والتي قد يكون عددها كبيراً عندما تكون n بالمئات أو الآلاف.

    تعليق واحد اقرأ المزيد حل الجمل (النظمة) الخطية بالمصفوفات


    Solving linear system by matrices


    لن نعتمد الجانب النظري أو المجاهيل في كتابة هذا الموضوع بل سـأضع مثالاً و أطبق عليه الطريقة.



    هذه الطريقة صالحة من أجل حيث A المصفوفة، لأن المصفوفة القابلة للانعكاس إذا وإذا فقط



    معكوس مصفوفة

    لتكن A مصفوفة معرفة كما يلي:







    الخطوة الأولى : حساب محدد[م] المصفوفة ، وسنختار العمود الأخير لحسابه. إذا







    إذا المصفوفة قابلة للإنعكاس .



    الخطوة الثانية : نقوم بحساب ألفة المصفوفة. إن حساب الألفة يعتمد على حساب المحدد و يمز لها بـ











    كيف تم الحساب ؟

    تعليقان اقرأ المزيد تقطير المصفوفات


    Matrix Diagonalization




    تعريف 1: المصفوفة A من الحجم n×n تدعى قطورة (أو قابلة للتقطير) إذا كنت مشابهة لمصفوفة قطرية، أي إذا وجدت مصفوفة P عكوسة (قابلة للإنعكاس) بحيث أن المصفوفة تكون مصفوفة قطرية. عملية إيجاد P تسمى تقطيراً للمصفوفة A.

    قد يدور تساؤل فيما إذا كانت كل مصفوفة مربعة قطورة ، والجواب هو: لا، توجد مصفوفات[م] لا تقبل التقطير .



    مبرهنة[م] 1: المصفوفة A من الحجم n×n تكون قطورة إذا وفقط إذا كان لديها n متجهاً ذاتياً مستقلة خطياً[م].

    البرهان:



    لنفرض أن A قطورة، إذاً توجد مصفوفة عكوسة بحيث قطرية. لتكن عناصر القطر للرئيسي لـ D ، ولتكن متجهات[م] الأعمدة لـ p ، فإن:



    وبما أن فإن مما يؤدي إلى:

    علِّق اقرأ المزيد العناصر الأولية والعناصر الغير قابلة للتحليل




    Prime Elements and Irreducible Elements


    جدول المحتويات [اخفاء]
    تعريف
    أمثلة
    حقائق متعلقة بالحلقة التامة

    تعريف
    لتكن R حلقة إبدالية ذات محايد. نقول عن أنه عنصر أولي prime element إذا تحقق التالي:

    1. p ليس صفر ولا عنصر وحدة

    2. إذا كان بحيث فإن أو .



    نقول عن العنصر أنه غير قابل للتحليل irreducible إذا تحقق ما يلي:

    1. q ليس صفر ولا عنصر وحدة.

    2. إذا كان بحيث فإما a عنصر وحدة أو b عنصر وحدة.



    أمثلة
    1. في الحلقة العناصر الأولية هي العناصر الغير قابلة للتحليل وهي الأعداد الأولية.

    2. في الحلقة عمليات الضرب الممكنة للعنصر هي







    لذلك غير قابل للتحليل لن كل عملية ضرب هنا تضمنت عنصر من زمرة[م] الوحدات







    3. في الحلقة العنصر أولي وكذلك غير قابل للتحليل. إثبات هذا يحتاج إلى بعض الحسابات الجبرية الروتينية.



    حقائق متعلقة بالحلقة التامة
    حقيقة1: في حلقة تامة R. إذا كان p غير قابل للتحليل فإن قواسمه هي عناصر الوحدة والعناصر المتشاركة معه فقط.

    علِّق اقرأ المزيد الحلقة النيوثرية



    الحلقة[م] النيوثرية
    Noetherian Ring


    جدول المحتويات [اخفاء]
    لمحة تاريخية
    تعريف



    لمحة تاريخية
    تعد الحلقة النيوثرية جزءا هاما من الجبر بالنسبة لنظرية[م] العدد وبالذات في فرع الهندسة الجبرية. سميت الحلقة النيوثرية نسبة للرياضية الألمانية Amalie Emmy Noether (1882م-1935م) ووالدها هو الرياضي Max Noether. اشتهرت نيوثر بعملها في فروع جبرية متعددة مثل حقول العدد وحسبان التنوع وبإسهاماتها في الفيزياء النظرية. تعد نيوثر من أشهر النساء اللاتي عملن في حقل[م] الرياضيات وتعتبر نظرية نويثر في الفيزياء من أفضل النظريات الرياضية الدافعة لتطور الفيزاء النظرية. أيضا يعزى لها الإستخدام البارع لشرط السلسة المتصاعدة وتوظيفها للمثاليات بفعالية أكبر في الحلقات. انتقلت في أواخر حياتها تحت ضغط النازية إلى الولايات المتحدة والتحقت بإحدى الكليات هناك. للمزيد حول حياتها وأعمالها انظر http://en.wikipedia.org/wiki/Emmy_Noether



    رياضيات , جبر الحلقة النيوثرية Noether

    Noetherian Ring



    تعريف
    نقول عن حلقة R أنها تحقق شرط السلسلة المتصاعدة ascending chain condition واختصاره ACC إذا كانت كل سلسلة تصاعدية







    من المثاليات في R تصبح مستقرةstationary . بمعنى يوجد عدد صحيح موجب n بحيث







    نقول عن حلقة R أنها نيوثرية Noetherian إذا كانت تحقق شرط السلسلة المتصاعدة.



    إذا الحلقة النيوثرية هي التي لا تحتوي على سلسلة لا نهائية ومتصاعدة فعليا strictly ascending من المثاليات.



    علِّق اقرأ المزيد منطقة التحليل الوحيد


    Unique Factorization Domain (UFD)


    جدول المحتويات [اخفاء]
    تعريف
    حقائق ومبرهنات



    تعريف
    نقول عن حلقة[م] تامة R أنها منطقة تحليل وحيد (م.ت.و) إذا تحقق ما يلي:



    (1) كل عنصر غير صفري a يمكن كتابته كحاصل ضرب لعناصر غير قابلة للتحليل, أي على الصورة حيث u عنصر وحدة و عناصر غير قابلة للتحليل و.



    (2) أن يكون هذا التمثيل وحيد بالنسبة للتشارك. بمعنى أنه إذا أعطيت التفريقين decompositions التاليين







    حيث عنصري وحدة و عناصر غير قابلة للتحليل فإن كما يوجد تبديلة على بحيث متشاركان.





    ملاحظة

    الشرط الثاني يبين أنه إذا كان حيث عنصر وحدة و عناصر غير قابلة للتحليل فإن أي تفريق آخر للعنصر a سيكون على الشكل حيث عنصري وحدة و عناصر غير قابلة للتحليل يمكن إعادة ترتيبها وترقيمها بحيث يكون متشاركان.



    من ناحية أخرى إذا كان تفريق للعنصر a إلى حاصل ضرب عناصر غير قابلة للتحليل حيث u عنصر وحدة فإننا بكتابة حيث متشاركان و عناصر وحدة نجد أن







    حيث عنصر وحدة. لهذا السبب فإن الشرط (2) في تعريف منطقة التحليل الوحيد هو أقوى جملة ممكنة للتعبير عن وحدانية التحليل في الحلقات.



    حقائق ومبرهنات

    حقيقة1: إذا كانت R منطقة تحليل وحيد وكان غير قابل للتحليل فإن p أولي.



    البرهان: ليكن p غير قابل للتحليل وأن . إذا إذا كان a عنصر وحدة فإن لعنصر وبالتالي أي أن . بالمثل إذا كان b عنصر وحدة فإن . لذا نفرض أن a,b ليست عناصر وحدة. إذا

    علِّق اقرأ المزيد المثالية الأولية


    The Prime Ideal


    جدول المحتويات [اخفاء]
    تعريف
    أمثلة على مثاليات أولية وغير أولية
    مبرهنات في المثالية الأولية

    تعريف
    نقول عن مثالية I من حلقة[م] R أنها أولية إذا كانت وكان لكل مثاليتين A,B في R فإن







    أمثلة على مثاليات أولية وغير أولية
    1. المثالي في حلقة تامة هو مثالي أولي لأن إذا كان بحيث فإن وبالتالي و .



    2. في الحلقة المثالية أولية.



    3. في الحلقة المثالية غير أولية حيث بينما .



    4. إذا كان p عدد أولي فإن المثالية من الحلقة مثالية أولية لإثبات ذلك افرض أن a,b صحيحين بحيث يكفي إثبات أن أحدهما ينتمي للمثالية. بما أن فإن مضاعف للعدد p, أي أن وحيث أن p أولي فإن أو . إذا a أو b ينتمي إلى .



    5. في الحلقة تكون مثالية أولية, تأكد من ذلك.



    6. في الحلقة المكونة من كل الحدوديات ذات المعاملات الصحيحة المثالية المولدة بواسطة مثالية أولية وتتكون من كل الحدوديات من التي حدها الثابت عدد زوجي, تأكد من ذلك.



    7. في الحلقة المثالية ليست أولية. لبيان هذا لاحظ أن





    ولكن لأن .



    مبرهنات في المثالية الأولية
    فيما يلي نقدم صيغة بسيطة تعتبر شرطا كافيا لكي تكون I أولية ولكنها بشكل عام ليست شرطا ضروريا. إذا كانت R إبدالية فإنها تصبح ضرورية وكافية لتحقق الأولية على I.

    مروان عوكلي
    المدير العام
    المدير العام

    Mozilla Firefox
    الدولة : المغرب
    ذكر
    عدد المساهمات : 548
    نقاط : 4126
    السٌّمعَة : 0
    تاريخ التسجيل : 21/12/2009
    العمر : 21
    الموقع : منتدى 3/7
    احترام قانون منتديات 3/7 : 100%
    الهواية : الكتابة
    المهنة : طالب

    ــــــــــــــــــــــــــــــ

    default رد: معلومات عن الرياضيات

    مُساهمة من طرف مروان عوكلي في الأربعاء 24 فبراير 2010, 14:31

    شكرا دمت متالقا





    لاتقرأ وترحل بل سجل نفسك بالضغط على الرابط
    http://talta-sept.yoo7.com/profile.forum?mode=register



    Abdelhalim BERRI
    نائب المدير
    نائب المدير

    Mozilla Firefox
    الدولة : المغرب
    ذكر
    عدد المساهمات : 818
    نقاط : 4642
    السٌّمعَة : 12
    تاريخ التسجيل : 04/01/2010
    العمر : 56
    احترام قانون منتديات 3/7 : 100%
    الهواية : الكتابة
    المهنة : استاذ



    default رد: معلومات عن الرياضيات

    مُساهمة من طرف Abdelhalim BERRI في الجمعة 05 مارس 2010, 14:03







      الوقت/التاريخ الآن هو الجمعة 09 ديسمبر 2016, 14:08